
7 Families of Additive Manufacturing

According to ISO/ASTM52900-15 (formerly ASTM F2792)

POWDER BED FUSION (PBF)

BINDER JETTING

(Binder Jetting* is available from ExOne.

Voxeljet, Desktop Metal's Production System™.

*metal & ceramic require post-print sintering

Liquid bonding agents are selectively applied

and inorganic materials. Metal or ceramic

powdered parts are typically fired in a furnace

onto thin layers of powdered material to build up

parts layer by layer. The binders include organic

SHEET LAMINATION

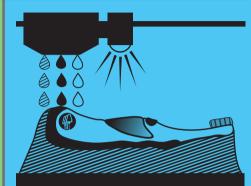
LOM - Laminated Object Manufacture

SDL - Selective Deposition Lamination

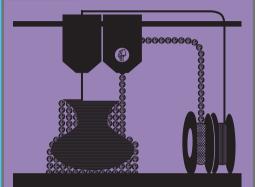
UAM - Ultrasonic Additive Manufacturing

Sheets of material are stacked and laminated

method can be adhesives or chemical (paper/


(metals). Unneeded regions are cut out layer by

together to form an object. The lamination


plastics), ultrasonic welding, or brazing

layer and removed after the object is built

Alternative Names:

MATERIAL JETTING

MATERIAL **EXTRUSION**

Alternative Names:

FFF - Fused Filament Fabrication

FDM™ - Fused Deposition Modeling

BMD™ - Bound Metal Deposition*

APD™ - Augmented Polymer Deposition

ADAM™ - Atomic Diffusion Additive Mfg*

Material is extruded through a nozzle or orifice

multi-laver models. Common varieties include

heated thermoplastic extrusion (similar to a hot

in tracks or beads, which are then combined into

DIRECTED ENERGY DEPOSITION (DED)

Alternative Names:

SLA[™] - Stereolithography Apparatus DLP™- Digital Light Processing

3SP™ - Scan, Spin, and Selectively Photocure

CLIP™ - Continuous Liquid Interface Production

Description:

A vat of liquid photopolymer resin is cured through selective exposure to light (via a laser or projector) which then initiates polymerization and converts the exposed areas to a solid part.

Strengths:

- High level of accuracy and complexity
- Smooth surface finish
- Accommodates large build areas

Typical Materials

UV-Curable Photopolymer Resins

Alternative Names:

SLM[™] - Selective Laser Melting: (a.k.a. SLS[™] -Selective Laser Sintering): DMLS™ - Direct Metal Laser Solidification (f.k.a. Sintering): EBM[™] - Electron Beam Melting; MJF[™] - Multi Jet Fusion: SHS™ - Selective Heat Sintering

Description:

Powdered materials is selectively consolidated by melting it together using a heat source such as a laser or electron beam. The powder surrounding the consolidated part acts assupport material for overhanging features.

- High level of complexity

Strengths:

- Allows for full color printing
- High productivity

after they are printed.

Alternative Names:

3DP™-3D Printing

and others)

Description:

Uses a wide range of materials

Strengths:

- Relatively low cost (non-metals)
- Allows for combinations of metal foils.

Description:

- High volumetric build rates

Strengths:

High level of accuracy

Alternative Names:

MJM - Multi-Jet Modeling

SCP™ - Smooth Curvatures Printing

Polviet™

Proiet™

Description:

- Allows for full color parts
- Enables multiple materials in a single part

Droplets of material are deposited layer by layer

to make parts. Common varieties include jetting

a photcurable resin and curing it with UV light.

then solidify in ambient temperatures.

as well as jetting thermally molten materials that

Strenaths:

Description:

Inexpensive and economical

glue gun) and syringe dispensing.

- Allows for multiple colors
- Can be used in an office environment
- Parts have good structural properties

Typical Materials

Thermoplastic Filaments and Pellets (FFF): Liquids, and Slurries (Syringe Types)

Alternative Names:

LMD - Laser Metal Deposition LENS™ - Laser Engineered Net Shaping DMD - Direct Metal Deposition

WAAM - Wire-arc Additive Manufacturing

Powder or wire is fed into a melt pool which has been generated on the surface of the part where it adheres to the underlying part or layers by using an energy source such as a laser or electron beam. This is essentially a form of automated build-up welding.

Strengths:

- Not limited by direction or axis
- Effective for repairs and adding features
- Multiple materials in a single part

Typical Materials

Metal Wire and Powder, with Ceramics

Strengths:

Typical Materials

Powder acts as support material

Plastics, Metal and Ceramic Powders, and

Wide range of materials

Typical Materials

Powdered Plastic, Metal, Ceramics. Glass.

Typical Materials

Paper, Plastic Sheets, and Metal Foils/Tapes

Typical Materials

Photopolymers, Polymers, Waxes

Laser cladding